Telehealth-Only Reproductive Care: Equity, Leadership, and Security Challenges for ViraWell Health Solutions

Daphnee LABIDOU-WEST

Marymount University, USA, D0l74527@Marymount.edu ORCID: https://orcid.org/0009-0007-3811-0378

Abstract: Digital transformation is reshaping healthcare delivery, yet many providers struggle to align digital strategy with leadership and organizational culture. This paper examines ViraWell's transition to an all-virtual reproductive healthcare model to explore how technology, compliance, and ethical leadership intersect to shape patient and employee experiences. Using the Balanced Scorecard and Kotter's 8-Step Change Model as guiding frameworks, the study connects digital implementation to measurable outcomes in quality, culture, and equity. Findings emphasize that successful telehealth transformation requires more than technological innovation; it demands adaptive leadership, inclusive communication, and attention to human-centered values. The paper concludes by offering recommendations for fostering sustainability, equity, and trust in future digital healthcare initiatives.

Keywords: Telehealth, Reproductive Healthcare, Digital Transformation, Health Equity, Virtual Care, Change Management, Cybersecurity

Introduction

As of early 2024, about 54% of Americans had participated in at least one telehealth visit, with 38% using it for medical or mental health purposes (Telehealth statistics 2025; CDC, 2024). In this context, ViraWell Health Solutions, a leading provider of reproductive and sexual health services, is making a significant operational change by closing all physical clinics to focus entirely on a virtual, telehealth-based model. This strategic move aims to improve accessibility, reduce costs, and serve underserved communities through digital platforms. This decision promotes healthcare advancements, viewing telemedicine as scalable, accessible, and cost-effective (Dorsey & Topol, 2020). It aims to improve access, reduce costs, and serve underserved populations via digital platforms. Since COVID-19, telehealth use has surged worldwide, helping close service gaps, especially in rural areas (Shigekawa et al., 2018). In the U.S., telehealth adoption by physicians jumped from 15.4% in 2019 to 86.5% in 2021, driven by safety protocols and policy changes. Medicare data show telehealth visits increased 63-fold in 2020, and by 2023, 17% of healthcare visits were remote (Magnet ABA, 2025). The telehealth market was valued at USD 83.5 billion in 2022 and is projected to reach USD 513.85 billion by 2030, growing at a 25.5% CAGR (Bali, 2025). By late 2024, a quarter of U.S. abortions will be through telehealth, mainly via medication delivery and shield laws protecting providers. Several pro-abortion states enacted laws to reduce legal risks for clinicians offering telehealth abortion meds to patients in restricted states (Sobel et al., 2025; Fiastro et al., 2025). These trends highlight the importance of ViraWell's shift.

Implementing a telehealth-only model requires redesigning workflows, retraining staff, strengthening data privacy, and addressing digital access disparities (Hill & Haigh,

2025; Fox et al., 2025; Kruse et al., 2018; Haleem et al., 2021). This shift reflects broader digital health trends and raises ethical and strategic issues about equity, compliance, and workforce change (Busto & Gordon, 2023; Kruse et al., 2020). The ViraWell case study offers insights for assessing organizational readiness and managing healthcare innovation.

Problem and Significance

ViraWell aims to expand access, but faces risks related to broadband inequity. Only 73% of rural adults have high-speed internet, compared to 86% in suburbs, and nearly half of non-metro households lack reliable connections compared with 30.6% in metro areas (Gelles-Watnick, 2024; Curtis et al., 2023). These gaps, along with challenges in privacy, safety, and literacy, could exacerbate disparities (Contreras et al., 2020; Powell et al., 2021). Low-income women, rural residents, and communities of color are most affected (Curtis et al., 2022; Girmay et al., 2024; Roberts & Mehrotra, 2020). While telehealth expands, services like STI testing and contraception remain limited in publicly funded clinics (Haas et al., 2025). Privacy risks are on the rise, with 51.9 million records breached in 2022 (Alder, 2025; OCR, 2022). Building trust, improving communication, and enhancing cultural competence (Hilty et al., 2020; Aijaz et al., 2024) are essential, along with workforce training and equity strategies, for delivering patient-centered care (Kruse et al., 2018; Moazzami et al., 2020; Dorsey & Topol, 2020).

Method

This paper reviews theoretical and empirical studies on digital healthcare transformation, focusing on telehealth in reproductive health, and draws from both qualitative and quantitative research across healthcare, IT, and organizational change (Snyder, 2019).

Keywords and Search Strategy

The review used terms such as *telehealth in reproductive healthcare* (Brown et al., 2023), *telemedicine adoption* (Kruse et al., 2018), *digital transformation* (Agarwal et al., 2010), *workforce training* (Shore et al., 2020), *HIPAA compliance* (Shachar et al., 2020), *change management* (Barrow & Annamaraju, 2022), *health equity and digital divide* (Roberts & Mehrotra, 2020), *cybersecurity reproductive health* (Wright & Burrell, 2023), *virtual care experience* (Powell et al., 2017), and *telehealth disparities* (Campos-Castillo & Anthony, 2021), with Boolean strings such as ("telehealth" OR "telemedicine") AND ("reproductive health" OR "sexual health") and ("healthcare" AND "cybersecurity") AND ("HIPAA" OR "compliance").

Inclusion and Exclusion Strategy

This review analyzed 132 peer-reviewed articles (2002–2025) from major databases on telehealth in reproductive and behavioral health, workforce, access, cybersecurity, and engagement (Kotter, 1996). Excluded were non-empirical studies, paywalled articles, publications before 2002 unless they were foundational (e.g., Kotter, 1996), and studies focused only on in-person or pediatric care.

Literature Review

This literature review synthesizes research across healthcare innovation, digital infrastructure, health equity, workforce development, and organizational change to assess the complexities and opportunities involved in ViraWell's transition to an entirely virtual telehealth model (Greenhalgh et al., 2020). It draws on 132 peer-reviewed articles from

2008 to 2024, covering areas such as public health, digital transformation, cybersecurity, and leadership strategy. Key themes include the digitalization of healthcare delivery (Dorsey & Topol, 2020), workforce implications of remote medical operations (Shore et al., 2020), compliance and data privacy issues (Shachar et al., 2020), and ethical considerations for equitable access (Roberts & Mehrotra, 2020). The review also discusses one strategic planning framework (Cusack et al., 2008) and one change management model (Barrow & Annamaraju, 2022) to evaluate their relevance for guiding ViraWell's transformation. Each theme interconnects to support evidence-based recommendations for the organization's digital transition.

Digital Transformation and Telehealth in Reproductive Health

ViraWell's shift to telehealth exemplifies a broader, evidence-based movement in healthcare, especially in reproductive and sexual health, toward digital, patient-focused care models (Koenig et al., 2023; Greenhalgh et al., 2020; Eberly et al., 2020). The COVID-19 pandemic sped up telehealth adoption, boosting virtual consultations, e-prescriptions, and remote counseling as effective alternatives to in-person visits (Greenhalgh et al., 2020). Studies confirm that telehealth improves access to reproductive services for underserved populations. For instance, Koenig et al. (2023) found that telehealth for abortion care reduced travel burdens and increased service access in restrictive areas. Likewise, Eberly et al. (2020) noted that virtual platforms lowered transportation and stigma barriers for rural and low-income patients.

Effective reproductive telehealth depends on more than technology; it needs provider expertise, user-focused design, and organizational coordination. For sensitive services like abortion counseling or fertility support, building trust remotely requires providers trained in "digital empathy" to communicate warmth via video or messaging (Shore et al., 2020). Telehealth systems should also be co-created with diverse users to prevent dropouts and misunderstandings, especially among low-literacy and multicultural groups (Campos-Castillo & Anthony, 2022). When these factors, along with strong infrastructure, training, and patient education, are integrated, virtual care can match face-to-face outcomes. A systematic review indicated that well-designed telehealth yields comparable satisfaction for preventive services like contraception and prenatal care (Dorsey & Topol, 2020; Eberly et al., 2020). ViraWell's transformation, therefore, must go beyond simply adopting virtual platforms. Its success depends on a comprehensive redesign that merges cultural sensitivity, workforce preparedness, and user-centered systems to provide adequate reproductive healthcare reliably in a digital setting.

Workforce and Organizational Change in Virtual Healthcare

The shift to telehealth in healthcare organizations such as ViraWell requires a comprehensive, systemic transformation of the workforce. This change goes beyond technical training, impacting clinical workflows, leadership approaches, communication methods, and organizational culture (Butcher & Hussain, 2022; Shore et al., 2020). Recent studies show that implementing telehealth involves modifying team roles, establishing new remote communication norms, and updating performance standards to ensure continuous care and staff cohesion in virtual environments (Butcher & Hussain, 2022; Wisniewski et al., 2020). A key part of this transition is workforce reskilling. Skills such as digital health literacy, asynchronous communication, and virtual clinical etiquette are now crucial for care delivery, especially in sensitive areas like reproductive health (Shore et al., 2020). When staff acquire these skills, patient satisfaction and provider confidence tend to increase, as observed in behavioral health and maternal care settings (Endalamaw et al., 2024). Meanwhile, healthcare organizations need to overhaul their traditional workflows. For

instance, digital intake forms, remote monitoring tools, and electronic record updates have substituted in-person procedures (Kichloo et al., 2020). Studies show that workflow redesigns that incorporate system interoperability and alignment across roles significantly improve the efficiency and effectiveness of telehealth services (Greenhalgh et al., 2020; Gleason & Suen, 2022).

Virtual care also brings new organizational challenges, such as remote work fatigue, less face-to-face collaboration, and difficulties in sustaining team morale (Khairat et al., 2019). Research indicates that telehealth implementations without adequate staff support and transparent internal communication are linked to higher burnout and disengagement (Caldwell et al., 2024). Therefore, ViraWell should focus on promoting virtual community-building, establishing peer mentoring programs, and providing mental health resources for staff. Moreover, leadership models need to adapt. Unlike traditional hierarchical frameworks, digital leadership focuses on flexibility, empathy, and decentralized decision-making (Anwar & Saraih, 2024). In telehealth settings, leaders are expected to coach rather than command, encouraging autonomy while maintaining accountability (Nugroho et al., 2024). Emerging roles, such as digital health coaches, telehealth coordinators, and cybersecurity liaisons, are transforming the sector. These positions are vital for operational support and require specialized training programs (Dhunnoo, 2025). Careful workforce transition planning is crucial to ensure that legacy staff are properly retrained or reassigned (Endalamaw et al., 2024).

Finally, telehealth requires new ways to evaluate performance. Traditional metrics such as wait times or patient throughput are no longer sufficient in this digital setting. Instead, platforms should focus on metrics like virtual visit duration, technical error frequency, and patient engagement with online tools (Morelli et al., 2024). Evenson et al. (2024) highlight the need to include equity-focused KPIs to track disparities related to race, income, and language access. By actively addressing workforce and structural factors, ViraWell can enhance service quality, improve staff retention, and support long-term sustainability within its telehealth approach.

Technology, Compliance, and Cybersecurity in Telehealth

The success of telehealth depends on a secure, interoperable infrastructure that supports quality care and protects sensitive data. For ViraWell, focusing on reproductive and sexual health, this infrastructure must improve efficiency while maintaining confidentiality, informed consent, and data protection (Zhang & Saltman, 2022; Hall & McGraw, 2014; Amri et al., 2024). As ViraWell shifts to a virtual model, addressing HIPAA compliance, data encryption, and cybersecurity is vital amid increased legal and societal scrutiny in the post-Roe v. Wade era (Clayton et al., 2022; HHS, 2024; Wired Editorial Team, 2023). Ensuring HIPAA compliance involves encrypting protected health information, secure data transmission, audit trails, and controlled access (HHS OCR, 2025; HIPAA Journal, 2025). While pandemic flexibilities allowed the use of platforms like FaceTime and Zoom, those exemptions have expired, requiring end-to-end encryption, multi-factor authentication, and secure cloud storage.

Cybersecurity is a significant challenge in telehealth, as healthcare is the top target for cyberattacks worldwide. Ransomware and phishing increased in 2021-2022, making patient data vulnerable (Health Sector Cybersecurity Coordination Center, 2022). Breaches could expose sensitive reproductive health information. Best practices include adopting a zero-trust security model and ongoing staff training on phishing, access control, and data handling (Zadushlivy et al., 2025; Vukotich, 2023). These actions also serve as an ethical duty: protecting digital data in reproductive care supports patient autonomy and safety. When healthcare leaders view cybersecurity as a patient-care issue, they foster a culture of digital ethics and trust.

Digital informed consent complicates telehealth, requiring that online platforms ensure patient understanding and voluntary agreement. Studies show clear, culturally appropriate language, real-time explanations, and question opportunities enhance comprehension and consent (Kassam et al., 2023; Shachar et al., 2020). Privacy risks rise with shared devices or a private environment's lack, making discreet communication, identity verification, and secure interfaces vital (Houser et al., 2023; Rosenfeld et al., 2021). Building trust with informed and protected patients is essential, particularly in sensitive reproductive care, where emotional safety is as crucial as clinical safety. Accessibility and inclusivity are vital for telehealth's equity. Digital platforms must adhere to the ADA by including features like screen-reader compatibility, captions, and easy navigation (ADA.gov, 2025; Ramineni et al., 2025). Without these, patients with disabilities or limited digital literacy often cannot access essential services (Campos-Castillo & Anthony, 2022). To ensure fairness, ViraWell should develop systems supporting various languages, literacy levels, and devices for all users.

Finally, ethical technology procurement and interoperability are key to sustainability. Healthcare organizations should avoid vendor lock-in by choosing platforms supporting open standards, data portability, and customization (Ayepola & Abos, 2024; Opara-Martins et al., 2016). Contracts should include clauses on data breach response, uptime, and EMR compatibility (Gogia, 2019). This approach protects privacy, maintains continuity, and allows adaptation to future digital advances without compromising care quality. By embedding security, accessibility, and ethical management, ViraWell can build patient trust, stay compliant, and position itself as a resilient, patient-focused leader in virtual reproductive healthcare.

Health Equity, Digital Divide, and Ethical Concerns

The rapid move to telehealth-only models like ViraWell introduces new ethical challenges related to equity, access, and privacy (Roberts & Mehrotra, 2020; Richardson et al., 2022). Research shows that low-income households, older adults, individuals with disabilities, and rural residents often lack broadband or digital tools for virtual care (Berkowsky et al., 2017; Wang et al., 2024). These barriers are significant in reproductive health, where limited connectivity can restrict access to contraception or abortion counseling. Rodriguez et al. (2021) found that patients in underserved areas are less likely to complete virtual visits due to connectivity issues and limited digital literacy. Without inclusive design, telehealth can unintentionally deepen inequities even as it removes geographic barriers (Samuels-Kalow et al., 2021).

Digital literacy gaps further impact engagement. Patients unfamiliar with telehealth applications often miss appointments, feel frustrated, and have lower satisfaction (Campos-Castillo & Anthony, 2022). Barriers such as limited English skills, low health literacy, and disabilities can make these issues worse, highlighting the need for multilingual platforms, digital guides, and accessible interfaces (Eberly et al., 2020). To promote equity, ViraWell should expand broadband access partnerships and offer patient support tailored to marginalized groups (Roberts & Mehrotra, 2020; Caldwell et al., 2024).

Privacy and safety are also key ethical concerns in digital reproductive care. People in unsafe or crowded environments, such as teenagers or survivors of intimate partner violence, may hesitate to use telehealth for fear of being overheard or watched (Rankine et al., 2023; Perry, 2023). Shachar et al. (2020) point out that virtual consultations often lack proper privacy controls, which can increase risks for those without secure spaces. Providers can reduce these risks by offering private communication options like chat check-ins or coded phrases (Jack & Campbell, 2021) and by adopting trauma-informed privacy protocols for patients experiencing domestic violence or housing insecurity (AAP, 2021; Houser et al., 2023).

Finally, ethical telehealth practice must tackle algorithmic bias and historical mistrust in reproductive healthcare. Automated triage systems and predictive tools can worsen disparities when they are built on biased data (Obermeyer et al., 2019). Nelson (2022) reminds us that past reproductive injustices, such as forced sterilizations and exclusion from clinical trials, have fostered deep distrust among communities of color. Transparent governance, community engagement, and algorithmic equity audits are therefore vital to building trust and preventing harm (NIH AI Equity Lab, 2025; Obermeyer et al., 2019). For ViraWell's digital model to be genuinely equitable, it must address both technological bias and the legacy of reproductive disenfranchisement that continues to influence patient experiences.

Organizational Impacts: Culture, Leadership, and Customer Experience

Organizational culture remains a vital yet often ignored element in digital transformation (Rankine et al., 2023). For healthcare groups like ViraWell, moving to virtual care involves redefining how values, norms, and teamwork are expressed in digital spaces. Culture can either support or obstruct innovation; if overlooked, organizations may experience disengagement, resistance, and unsuccessful implementation (Greenhalgh et al., 2020). Building a collaborative virtual workspace relies on clear communication, accountability, and adjusted teamwork suited to remote environments. Leadership must also adapt as physical presence and informal feedback shift to digital communication. Virtual environments require flexible, trust-based leadership that emphasizes transparency, empathy, and psychological safety (Bleakley et al., 2021; Casillas et al., 2022; Caci et al., 2025). Leaders who display digital fluency and emotional intelligence build resilience and align with evolving technological goals (Steenkamp et al., 2025; Sriharan et al., 2024).

Healthcare professionals often face stress and isolation when remote work replaces face-to-face care (Moazzami et al., 2020). While flexibility can enhance autonomy, it may also weaken social connections and professional identity. The risk of burnout rises as collaboration and peer support decrease (Klein et al., 2022). Structured team check-ins, peer mentoring, and recognition programs help maintain engagement and morale during digital transitions (Moazzami et al., 2020; Wisniewski et al., 2020). Providing staff with reliable technology and virtual care training further supports workforce stability (Gleason & Suen, 2022). Patient satisfaction in telehealth relies heavily on platform usability, response times, and clinician communication (Powell et al., 2017; Shore et al., 2020). Streamlined workflows, digital intake, virtual waiting rooms, and secure follow-up are crucial for seamless experiences (Gogia, 2019; Contreras et al., 2020; Dorsey & Topol, 2020). Digital empathy, demonstrated through attentiveness, tone, and visual engagement, is vital in reproductive healthcare (Friesem, 2016; Hawrysz et al., 2021). Contrary to assumptions, telehealth can build trust when clinicians use verbal affirmation and eye contact, often matching or surpassing in-person satisfaction (Shigekawa et al., 2018; Shore et al., 2020).

Finally, ongoing feedback is crucial for quality improvement. Post-visit surveys and in-platform comment tools boost responsiveness and build trust (Clarke & Hollinshead, 2020; Powell et al., 2021). By incorporating real-time insights, organizations can improve usability and strengthen patient relationships. In sum, successful digital transformation requires more than just adopting technology; it involves rethinking culture, leadership, and experience. When internal values align with virtual best practices and patient-centered design, telehealth becomes a strategic asset that fosters sustainability and trust (Deloitte Insights, 2025; Prosci, 2025).

Balanced Scorecard Framework

The Balanced Scorecard (BSC) offers a comprehensive framework to align ViraWell's telehealth strategy with its mission by monitoring performance across various areas

(Stawar, 2002). Created by Kaplan and Norton, this tool encompasses four main domains: financial, customer, internal processes, and learning and growth, and has been widely used in healthcare to manage complex changes (Betto et al., 2001). As ViraWell transitions to an entirely virtual care model, the BSC acts as a strategic guide, ensuring digital transformation efforts are coordinated, measurable, and centered on patient needs (Costa et al., 2022). This framework helps keep virtual care aligned with operational goals and long-term priorities. Financially, ViraWell must track both cost savings and revenue opportunities from virtual care (Buntin et al., 2011).

Although virtual models can reduce costs related to physical facilities, they require upfront investments in digital infrastructure, cybersecurity, and staff training. Effective digital health systems track the cost-per-encounter and return on investment from technology (Buntin et al., 2011; Costa et al., 2022). ViraWell should monitor financial metrics such as revenue per virtual visit, telehealth usage rates, and technology licensing fees to ensure financial sustainability (Buntin et al., 2011). By using these financial indicators, the organization can confirm that its telehealth model remains viable in the long term (Mehrotra et al., 2021). Research shows that patient experience in telehealth is affected by digital accessibility, provider communication, and perceived empathy (Powell et al., 2017). Patients also prioritize ease of use, short wait times, and intuitive digital navigation (Powell et al., 2017). ViraWell should monitor metrics like Net Promoter Scores, usage of digital literacy support, and missed appointment rates to evaluate patient-centered outcomes (Eberly et al., 2020). These metrics support the organization's goal of providing equitable, accessible, and compassionate reproductive care. Redesigning internal processes is crucial to ensure ViraWell's virtual workflows are efficient and secure (Haleem et al., 2021). Studies emphasize that telehealth success depends on interoperability, process mapping, and minimizing errors during digital handoffs (Zhang & Saltman, 2022). ViraWell should track metrics such as platform uptime, consent completion rates, appointment cycle times, and error rates to measure operational reliability (Kruse et al., 2018).

Regular monitoring of internal workflows guarantees continuity, quality, and trust in virtual care (Greenhalgh et al., 2020). The ongoing success of digital transformation relies on workforce development, adaptive leadership, and knowledge sharing (Laukka et al., 2022). The literature confirms that investing in human capital, including digital skills training and emotional intelligence, is essential for the success of digital healthcare (Cusack et al., 2008). ViraWell can assess staff digital fluency, training participation, telehealth skills, and satisfaction with virtual work to strengthen its human resources (Veinot et al., 2018; Brown et al., 2019). This encourages a culture of continuous learning and adaptability, which are key to long-term success. Incorporating an equity perspective is essential to ensure digital transformation does not worsen existing healthcare disparities (Veinot et al., 2018). Scholars suggest adding a fifth dimension, health equity, to the Balanced Scorecard (BSC) to evaluate its impact on vulnerable groups (Brown et al., 2023). ViraWell can accomplish this by analyzing user data based on ZIP code, race, device type, and language to monitor access and inclusion. Incorporating equity into strategic planning helps ensure care remains fair, accessible, and aligned with ViraWell's core values (Kruse et al., 2018). Using the Balanced Scorecard, ViraWell can convert strategic goals into measurable, mission-driven results (Kaplan & Norton, 2005).

Integrating the Balanced Scorecard (BSC) into telehealth operations enables leaders to align strategic goals with measurable outcomes, including patient satisfaction, compliance, and staff engagement. Its interconnected framework helps organizations see how improvements in one area, like training, can enhance others, including care quality and collaboration (Kaplan & Norton, 2004). For ViraWell, using the BSC supports evidence-based decision-making, aligns daily activities with long-term strategies, and ensures that digital innovation results in operational excellence and equitable patient outcomes.

Change Management: Kotter's 8-Step Model

John Kotter's 8-Step Change Model provides a structured, evidence-based approach for organizational transformation, emphasizing urgency, vision, stakeholder alignment, and cultural sustainability (Miles et al., 2023; Arabi et al., 2022). This model has been successfully applied in healthcare organizations to lead change efforts and reduce failure rates caused by poor communication, resistance, and leadership misalignment (Kotter, 1996; Small et al., 2016). ViraWell's transition from in-person to telehealth reproductive care is a key organizational change that benefits from a systematic, people-centered approach. When implemented thoughtfully, Kotter's framework helps decrease resistance, promote cross-team collaboration, and embed the digital care model into the organization's culture (Arabi et al., 2022; Miles et al., 2023).

Step 1: Establish a Sense of Urgency

A strong sense of urgency is crucial for driving organizational change, especially in healthcare, where resistance often arises from fear, uncertainty, or complacency (Hubbart, 2022; AHRQ TeamSTEPPS, 2023; Kotter, 1996). Organizations must provide compelling evidence, such as patient access issues, operational inefficiencies, clinical safety data, or systemic disparities, to justify change and motivate staff (AHRQ TeamSTEPPS, 2023; Weiner, 2009). Without this sense of urgency, staff motivation drops, and change efforts tend to stall due to inertia. Research shows that creating urgency by emphasizing factors like rising patient expectations, technological advances, and health equity issues encourages staff to take ownership and engage in transformation (Barrow & Annamaraju, 2018). For ViraWell, highlighting unmet needs of underserved populations and the inefficiencies of physical clinics can generate the momentum needed to adopt digital solutions.

Step 2: Form a Powerful Guiding Coalition

A diverse leadership coalition is crucial for establishing credibility, minimizing resistance, and promoting change across departments. As Nilsen et al. (2020) highlight, successful healthcare change hinges on gaining acceptance through involving professionals and influencing the initiation process. This shows that diverse coalitions help reduce resistance and enhance credibility. The literature on healthcare transformation indicates that interdisciplinary coalitions are most effective when they include frontline staff, clinical leaders, patient advocates, and IT specialists (Harrison et al., 2021). At ViraWell, such a team would act as cultural ambassadors, tackle implementation challenges, and showcase digital expertise. Spanos et al. (2024) identify key leadership competencies in modern healthcare, including collaboration, vision setting, and technology fluency.

Step 3: Develop a Vision and Strategy

A clear, emotionally compelling vision provides the core story that fosters stakeholder understanding and engagement during transformation (Rousseau & Have, 2022). In healthcare settings transitioning to telehealth, blending emotionally powerful language, such as emphasizing increased access and digital empowerment, with specific strategic goals (like virtual appointment rates and expanded community outreach), boosts staff motivation and alignment toward shared objectives (Rousseau & Have, 2022; VoltageControl, 2024). ViraWell's vision, centered on digital equity, patient-centered accessibility, and operational targets in infrastructure and training, will connect employees to purpose-driven outcomes while supporting measurable progress and commitment.

Step 4: Communicate the Vision

Effective change communication must be continuous, multi-channel, and tailored to meet stakeholder needs, thereby encouraging commitment during organizational change. A qualitative study involving mental health therapists preparing to implement measurement-based care identified key communication elements: clear reasoning, procedural knowledge, use of various communication channels, sufficient lead time, and two-way engagement. All these factors are connected to successful change acceptance through storytelling, executive support, and staff involvement (Albright et al., 2021). When communication incorporates storytelling, leadership alignment, and the promotion of internal champions across platforms like email, videos, and town halls, it fosters emotional connection and enhances understanding (Bonawitz et al., 2020; World Health Organization, 2024). These strategies reinforce the goals of the transformation, clarify the reason for change, and address diverse informational needs. In ViraWell's digital transition, using emails, leadership videos, staff town halls, and internal champions ensures that all teams understand the rationale for telehealth, stay emotionally connected, and are prepared to engage actively in the change.

Step 5: Empower Broad-Based Action

Empowerment involves removing obstacles, clarifying roles, and giving staff more independence, which encourages innovation, boosts morale, and helps virtual care succeed. A 2023 scoping study on employee-driven innovation in healthcare showed that enabling frontline staff to share ideas and lead changes significantly increased innovation and staff engagement (Cadeddu et al., 2023). Additional research confirms that empowerment is positively linked to higher morale and successful adoption of digital care models (Nilsen et al., 2020). When policies support frontline autonomy and staff are involved in redesigning protocols, resistance decreases, and ownership increases. At ViraWell, involving staff in codeveloping telehealth workflows improves digital skills and empowerment, accelerating acceptance and innovation across departments.

Step 6: Generate Short-Term Wins

Short-term successes demonstrate proof of concept, improve credibility, and increase motivation during transformation efforts. Healthcare advisory articles highlight that quick wins accelerate digital transformation adoption and reduce resistance to change (Berriatua, 2022). They play a crucial role in building momentum within Kotter's model (Miles et al., 2023; Barrow, 2022). Celebrating wins, such as increased attendance or successful system prototypes, validates efforts, encourages champions, and boosts confidence. ViraWell can showcase early metrics, such as increased telehealth usage or higher patient satisfaction, to build momentum and engage staff.

Step 7: Consolidate Gains and Produce More Change

Sustained momentum depends on scaling early successes, avoiding change fatigue, and embedding innovation through ongoing review and iteration. Research warns that "change fatigue" can occur if wins are not systematically leveraged; keeping forward progress requires regular evaluation (Ignatowicz et al., 2023). The industrial change literature also highlights the importance of building on initial gains to prevent regression (Blackburn et al., 2011). Continuous assessment of performance, gathering feedback, and iterative improvements help turn successful pilots into routine practices. ViraWell should expand pilot programs, refine systems using equity data, and regularly review feedback from patients and staff to sustain progress.

Step 8: Anchor New Approaches in the Culture

Anchoring new approaches within organizational culture ensures that digital transformation persists beyond initial implementation phases. Kotter's final step, anchoring change into the culture, is widely recognized in healthcare change literature as critical for sustainability (Barrow, 2022). Likewise, technical change frameworks emphasize that integrating innovations into routine processes and systems prevents regression and promotes long-term momentum (Gavi, 2025).

Embedding digital competencies into onboarding, job descriptions, performance evaluations, and leadership development helps make new behaviors a part of daily routines (Scott, 2023). Culture does not change just through policy; it evolves when values are consistently reflected in operational processes and routines (IMD, 2025). For ViraWell, incorporating digital fluency and equity values into formal routines, such as evaluations, onboarding, and leadership development, will help make the telehealth transformation part of the organizational identity and support long-term sustainability.

Conclusion

Kotter's 8-Step Change Model offers a practical framework for guiding organizational transformation, highlighting urgency, shared vision, and cultural integration (Harrison et al., 2021; Ebo, 2025). When applied with clarity and empathy, it helps staff align, reduces resistance, and integrates change into daily routines. This approach ensures ViraWell's telehealth transition remains fair, accessible, and patient-focused while strengthening stakeholder support, morale, and flexibility, key elements for maintaining innovation in digital healthcare systems.

Recommendations

To successfully shift to a telehealth-only model, ViraWell should adopt a comprehensive, equity-focused, and evidence-based approach. This involves expanding telehealth capabilities while explicitly addressing digital literacy and access gaps that could marginalize vulnerable groups (Roberts & Mehrotra, 2020). Ethical implementation requires proactive communication and culturally sensitive digital outreach, especially for populations with limited technology access or language barriers (Khoong et al., 2020). Organizationally, it is important to align clinical workflows with digital systems, redesign roles, and offer continuous staff training to ensure service quality and reduce resistance to change (Barrow & Annamaraju, 2022). Moreover, establishing feedback mechanisms through patient satisfaction surveys and staff check-ins promotes ongoing improvements and fosters long-term engagement (Ignatowicz et al., 2023). These recommendations incorporate best practices from strategic healthcare transformation and are grounded in evidence-based change management principles.

Invest in Comprehensive Workforce Upskilling for Telehealth Readiness

A key element in digital healthcare transformation is ensuring that the workforce receives proper training to provide high-quality virtual care (Totten et al., 2016). Research highlights that insufficient provider training often hinders effective telehealth deployment, particularly in specialized fields like reproductive health (Totten et al., 2016). ViraWell should introduce mandatory training modules focused on telehealth-specific skills, such as digital empathy, remote documentation, asynchronous care workflows, and HIPAA-compliant virtual communication. Evidence indicates that well-structured telehealth training programs significantly boost provider confidence and patient satisfaction ratings (Shore et al., 2020; Kruse et al., 2018). Training should be tailored to specific roles. For example, mental health

providers need advanced instruction in virtual engagement and maintaining therapeutic presence via video. In contrast, medical assistants benefit more from training in digital intake procedures and remote monitoring technologies (Wosik et al., 2020). Failing to customize training according to professional roles can lead to inconsistent patient experiences and workflow issues.

To promote continuous development, ViraWell should develop internal telehealth certification programs, peer mentoring systems, and performance incentives to enhance digital skills. Global evidence indicates that workforce growth in primary care requires more than just technical training; it also needs well-defined career pathways and supportive supervision to retain skilled personnel and foster innovation (Endalamaw et al., 2024). These initiatives should be incorporated into the "learning and growth" section of the Balanced Scorecard to track progress across the workforce systematically (Costa et al., 2022); Betto et al., 2022).

Design Telehealth Platforms with Accessibility and Equity in Mind

ViraWell should apply user-centered design principles across its digital platforms, such as patient portals, scheduling tools, and mobile apps, to lower access barriers and enhance equity. Essential accessibility features include multilingual interfaces, simplified designs for low-literacy users, ADA-compliant navigation, and audio-visual support options. Research indicates that co-design workshops with diverse patient groups help ensure digital tools accurately reflect community needs across racial, linguistic, and socioeconomic backgrounds (Eberly et al., 2020; Campos-Castillo & Anthony, 2021). Furthermore, ViraWell ought to establish digital navigator programs with trained staff, primarily to assist older adults and marginalized communities in accessing telehealth services. Outreach and training initiatives are proven to improve digital literacy and reduce disparities, notably among seniors (Gleason & Suen, 2022). These digital navigators, who may be retrained front desk staff or community health workers, can help patients troubleshoot tech issues, understand consent forms, and confidently access virtual visits (Wisniewski et al., 2020). This approach not only boosts appointment completion but also builds patient trust and promotes ongoing digital engagement. Evidence suggests that digital navigators are vital in bridging clinical care and technology, supporting both patients and providers during the shift to virtual care (Wisniewski et al., 2020). By incorporating inclusive design and dedicated support personnel, ViraWell can ensure its telehealth platform remains accessible, equitable, and responsive to all patient needs.

Prioritizing Cybersecurity and Trust in Reproductive Telehealth

Given the sensitivity of reproductive health data, ViraWell must develop a cybersecurity framework that goes beyond basic HIPAA compliance (He et al., 2021). Essential best practices include multi-factor authentication, end-to-end encryption, secure cloud storage with audit logs, and routine penetration testing to protect patient information in a wholly digital environment (He et al., 2021; Vukotich, 2023; Tazi et al., 2024). Research indicates that telehealth systems face increased risks from cyberattacks, especially ransomware and data breaches targeting healthcare infrastructure during digital expansion (He et al., 2021). A zero-trust security model, which assumes no internal or external user is inherently trustworthy, has become a key strategy for reducing these risks in healthcare settings (Vukotich, 2023).

Cybersecurity cannot rely solely on technology. Workforce readiness is key to reducing risks. Regular staff training on protected health information (PHI) handling, phishing detection, and digital informed-consent protocols is vital for maintaining patient trust and compliance with regulations (Tazi et al., 2024). The connection between privacy

and security must be actively managed to avoid vulnerabilities caused by human error, especially in high-touch specialties like reproductive healthcare.

Transparency is key for digital trust (Gerke et al., 2020). ViraWell should publish a clear privacy policy detailing how patient data is handled. Transparent data practices reduce patient anxiety and boost engagement. Studies underscore the value of patient-centered design and digital literacy to increase confidence in virtual care, especially in reproductive and chronic care (Whyler et al., 2024). By implementing cybersecurity, staff training, and transparent governance, ViraWell can protect data, foster trust, and encourage long-term use.

Establish Performance Metrics Aligned with the Balanced Scorecard

To promote strategic alignment and accountability, ViraWell should adopt a Balanced Scorecard (BSC) customized for the telehealth sector. Its four traditional domains, financial, customer, internal processes, and learning and growth, offer a structured way to align performance metrics with strategic goals in digital healthcare (Costa et al., 2022). In these areas, healthcare providers are increasingly including telehealth-specific metrics, such as cost per virtual visit, Net Promoter Scores, digital no-show rates, and staff digital fluency, to accurately assess performance (Betto et al., 2022). Financial metrics, including cost per consultation, subscription revenue, and reimbursement accuracy, are vital for the economic sustainability of virtual care. Customer metrics, like engagement, appointment satisfaction, and access equity, are key telehealth benchmarks (Costa et al., 2022). Internal process metrics such as response times and consent accuracy are crucial for service quality (Betto et al., 2022). To support learning and growth, metrics should measure workforce adaptation, such as digital competency scores, participation in telehealth training, and promotion rates related to virtual care skills. These indicators enhance organizational agility and prepare employees during transformational change (Evenson et al., 2024).

Recent healthcare management proposals recommend explicitly including equity as a fifth domain in the BSC to tackle ongoing disparities in telehealth access and outcomes across racial, geographic, and socioeconomic groups. Although equity frameworks have improved, many organizations still lack practical tools to measure and address inequities in service delivery (Caldwell et al., 2024). New evidence shows the benefit of equity-focused scorecards that evaluate technology access, language barriers, and usage patterns among historically underserved populations (Evenson et al., 2024). By adopting a telehealth-focused BSC that incorporates equity as a central element, ViraWell can align its performance metrics with its financial, operational, and mission goals to provide inclusive, high-quality reproductive healthcare.

Use Kotter's Model to Institutionalize Change

To prevent implementation fatigue and resistance from employees, ViraWell should employ Kotter's 8-Step Change Model for the transition. Key steps, such as forming a guiding coalition, achieving quick wins like reaching 1,000 telehealth visits, and integrating telehealth principles into the organizational culture, will promote long-term success (Barrow & Annamaraju, 2022). A change management officer should be designated to oversee the progress through each step and provide regular updates to the executive team. It is also crucial to include feedback mechanisms at every stage. Tools like anonymous pulse surveys, telehealth-specific town halls, and a digital suggestion box will enable real-time adjustments and foster greater staff ownership of the change process (Ignatowicz et al., 2023).

Create a Virtual Patient Experience Team to Enhance Engagement

Since virtual care changes how people interact (Contreras et al., 2020), ViraWell should create a dedicated team focused on improving the digital patient experience. This team would review engagement data, address patient feedback, and collaborate with IT to improve usability. Research shows that making patient experience a key organizational value leads to better retention and referrals (Powell et al., 2021). The team should also oversee training for clinicians in digital empathy, including skills like maintaining eye contact, adjusting tone, and using affirming language during virtual interactions (Shore et al., 2020). These practices emphasize human connection and help preserve trust, especially in emotionally sensitive areas of reproductive and sexual healthcare.

Conclusion

ViraWell's transition to telehealth illustrates that true digital transformation involves more than just technology; it requires cultural alignment, ethics, and adaptive leadership. The Balanced Scorecard and Kotter's Change Model provide practical frameworks to link innovation with accountability and sustainability. Healthcare leaders should examine how these models foster equity, resilience, and trust in digital care. By integrating strategic vision with inclusive communication, organizations can ensure that telehealth develops as a clinical and human-centered improvement in reproductive healthcare.

References

- ADA.gov. (2025). Telehealth and digital accessibility: Ensuring equal access under the Americans with Disabilities Act. U.S. Department of Justice. https://www.ada.gov/topics/telehealth/
- Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary, The digital transformation of healthcare: Current status and the road ahead. *Information Systems Research*, 21(4), 796–809. https://doi.org/10.1287/isre.1100.0327
- Agency for Healthcare Research and Quality. (2023, June). *Implementation Change Management*. https://www.ahrq.gov/teamstepps-program/curriculum/implement/activity/change.html
- Aijaz, M., Lewis, V. A., & Murray, G. F. (2024). Advancing equity in challenging times: A qualitative study of telehealth expansion and changing patient-provider relationships in primary care settings during the COVID-19 pandemic. *Digital health*, 10. https://doi.org/10.1177/20552076241233148
- Albright, K., Navarro, E. I., Jarad, I., Boyd, M. R., Powell, B. J., & Lewis, C. C. (2022). Communication strategies to facilitate the implementation of new clinical practices: a qualitative study of community mental health therapists. *Translational Behavioral Medicine*, 12(2), 324–334. https://doi.org/10.1093/tbm/ibab139
- Alder, S. (2025, July 15). Healthcare Data Breach Statistics. *The HIPAA Journal*. https://www.hipaajournal.com/healthcare-data-breach-statistics/
- American Academy of Pediatrics. (2021). *Telehealth to support trauma-informed care. Pediatric Practice Management Promising Practices.* https://www.aap.org/en/practice-management/care-delivery-approaches/telehealth/promising-practices/telehealth-to-support-trauma-informed-care
- Amri, Imtihanah & Sagalane, Andra & Kurniawan, Lely & Julianto, Ari & Ta'adi. (2024). Legal and Ethical Challenges in Digital Health Data Privacy: Navigating Patient Rights and Data Security in Telemedicine. *Global International Journal of Innovative Research* 2, 2663-2675. 10.59613/global. v2i11.363.
- Anwar, S., & Saraih, U. N. (2024). Digital leadership in the digital era of education: enhancing knowledge sharing and emotional intelligence. *International Journal of Educational Management*, 38(6), 1581-1611.
- Barrow, J. M. & Annamaraju, P. (2022 Sep. 18). Change Management in Health Care. In: *Stat Pearls* [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2025 Jan. https://www.ncbi.nlm.nih.gov/books/NBK459380/
- Arabi, Y. M., Al Ghamdi, A. A., Al Moamary, M., Al Mutrafi, A., AlHazme, R. H., & others. (2022). Electronic medical record implementation in a large healthcare system from a leadership perspective. BMC Med Inform Decis Mak 22, 66 (2022). https://doi.org/10.1186/s12911-022-01801-0
- Ayepola, G., & Abos, P. (2024). *Vendor Lock-In and Interoperability: Importance of interoperability among cloud services*. https://www.researchgate.net/publication/383855750_Vendor_Lock-In and Interoperability Importance of interoperability among cloud services

- Bali, V. (2025, July 8). The telehealth market is expected to grow at a CAGR of 25.5% from 2023 to 2030. *Cognitive Market Research*. https://www.cognitivemarketresearch.com/telehealth-market-report
- Barrow J. M., & Annamaraju P. [Updated 2022 Sep 18]. Change Management in Health Care. In: *Stat Pearls* [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459380/
- Berkowsky, R. W., Sharit, J., Czaja, S. J. (2017, November). Factors Predicting Decisions About Technology Adoption Among Older Adults. *Innovation in Aging* 1 (3), igy002, https://doi.org/10.1093/geroni/igy002
- Berriatua, S. (2022, November 29). Use quick wins to speed your healthcare digital transformation. *Managed Healthcare Executive*. https://www.managedhealthcareexecutive.com/view/use-quick-wins-to-speed-your-healthcare-digital-transformation?
- Betto, F., Sardi, A., Garengo, P., & Sorano, E. (2022). The Evolution of Balanced Scorecard in Healthcare: A Systematic Review of Its Design, Implementation, Use, and Review. *International Journal of Environmental Research and Public Health*, 19(16), 10291. https://doi.org/10.3390/ijerph191610291
- Blackburn, S., Ryerson, S., Weiss, L., Wilson, S., & Wood, C. (2011, May). How do I implement complex change at scale? https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/public%20sector/pdfs/how_do_i_implement complex change at scale.pdf
- Bleakley, A., Rough, D., Edwards, J., Doyle, P. R., Dumbleton, O., Clark, L., ... Cowan, B. R. (2021). Bridging social distance during social distancing: Exploring social talk and remote collegiality in video conferencing. *ArXiv*. https://doi.org/10.48550/arXiv.2109.14965
- Bonawitz, K., Wetmore, M., & Heisler, M. et al. (2020). Champions in context: which attributes matter for change efforts in healthcare? *Implementation Sci* 15, 62 (2020). https://doi.org/10.1186/s13012-020-01024-9
- Brown, A. F., Ma, G. X., Miranda, J., Eng, E., Castille, D., Brockie, T., Jones, P., Airhihenbuwa, C. O., Farhat, T., Zhu, L., & Trinh-Shevrin, C. (2019). Structural Interventions to Reduce and Eliminate Health Disparities. *American Journal of Public Health*, 109(S1), S72–S78. https://doi.org/10.2105/AJPH.2018.304844
- Brown, C., Neerland, C. E., Weinfurter, E. V., & Saftner, M. A. (2023). The Provision of Abortion Care via Telehealth in the United States: A Rapid Review. *Journal of Midwifery & Women's Health*, 68(6), 744–758. https://doi.org/10.1111/jmwh.13586
- Buntin, M. B., Burke, M. F., Hoaglin, M. C., & Blumenthal, D. (2011). The benefits of health information technology: a review of the recent literature shows predominantly positive results. *Health Affairs (Project Hope)*, 30(3), 464–471. https://doi.org/10.1377/hlthaff.2011.0178
- Busto, A., & Gordon, J. (2023, March 2). Reproductive Healthcare Trends: Navigating Telehealth. *Nixon Peabody LLP*. https://www.nixonpeabody.com/insights/alerts/2023/03/02/reproductive-healthcare-trends-navigating-telehealth
- Butcher, C. J., & Hussain, W. (2022). Digital healthcare: the future. Future Healthcare Journal, 9(2), 113–117. https://doi.org/10.7861/fhj.2022-0046
- Caci, L., Nyantakyi, E., Blum, K., Sonpar, A., Schultes, M. T., Albers, B., & Clack, L. (2025). Organizational readiness for change: A systematic review of the healthcare literature. *Implementation Research and Practice*, *6*, 26334895251334536. https://doi.org/10.1177/26334895251334536
- Caldwell, H. A. T., Yusuf, J., Carrea, C., Conrad, P., Embrett, M., Fierlbeck, K., Hajizadeh, M., Kirk, S. F. L., Rothfus, M., Sampalli, T., Sim, S. M., Tomblin Murphy, G., & Williams, L. (2024). Strategies and indicators to integrate health equity in health service and delivery systems in high-income countries: A scoping review. *JBI Evidence Synthesis*, 22(6), 949–1070. https://doi.org/10.11124/JBIES-23-00051
- Campos-Castillo, C., & Anthony, D. (2021). Racial and ethnic differences in self-reported telehealth use during the COVID-19 pandemic: a secondary analysis of a US survey of internet users from late March. *Journal of the American Medical Informatics Association: JAMIA*, 28(1), 119–125. https://doi.org/10.1093/jamia/ocaa221
- Casillas, A., Valdovinos, C., Wang, E., Abhat, A., Mendez, C., Gutierrez, G., Portz, J., Brown, A., & Lyles, C. R. (2022). Perspectives from leadership and frontline staff on telehealth transitions in the Los Angeles safety net during the COVID-19 pandemic and beyond. *Frontiers in digital health*, 4, 944860. https://doi.org/10.3389/fdgth.2022.944860
- Centers for Disease Control and Prevention (CDC). (2024, February 1). Products Data Briefs Number 493 February 2024. *Centers for Disease Control and Prevention*. https://www.cdc.gov/nchs/products/databriefs/db493.htm
- Clayton, E. W., Embí, P. J., & Malin, B. A. (2022). Dobbs and the future of health data privacy for patients and healthcare organizations. *Journal of the American Medical Informatics Association: JAMIA*, 30(1), 155–160. https://doi.org/10.1093/jamia/ocac155
- Contreras, C. M., Metzger, G. A., Beane, J. D., Dedhia, P. H., Ejaz, A., & Pawlik, T. M. (2020). Telemedicine: Patient-provider clinical engagement during the COVID-19 pandemic and beyond. *Journal of Gastrointestinal Surgery*, 24(7), 1692–1697. https://doi.org/10.1007/s11605-020-04623-5

- Costa, R., Pereira, L., Dias, Á., Gonçalves, R., & Jerónimo, C. (2022). Balanced scorecard adoption in healthcare. *International Journal of Electronic Healthcare 12* (22) 10.1504/IJEH.2022.119581.
- Curtis, M. E., Clingan, S. E., Guo, H., Zhu, Y., Mooney, L. J., & Hser, Y. I. (2022). Disparities in digital access among American rural and urban households and implications for telemedicine-based services. *The Journal of Rural Health*, 38(3), 512–518. https://doi.org/10.1111/jrh.12614
- Cusack, C. M., Pan, E., Hook, J. M., Vincent, A., Kaelber, D. C., & Middleton, B. (2008). The value proposition of the widespread use of telehealth. *Journal of Telemedicine and Telecare*, 14(4), 167–168. https://doi.org/10.1258/jtt.2007.007043
- Dhunnoo, P. (2025, April 28). The rise of digital health coaches, health navigators, and medical concierges. *The Medical Futurist*. https://medicalfuturist.com/the-rise-of-digital-health-coaches-health-navigators-and-medical-concierges/
- Dorsey, E.R. & Topol, E.J. (2020). Telemedicine 2020 and the Next Decade. *The Lancet, 395*, Article No. 859. https://doi.org/10.1016/S0140-6736(20)30424-4
- Eberly, L. A., Khatana, S. A. M., Nathan, A. S., Snider, C., Julien, H. M., Deleener, M. E., & Adusumalli, S. (2020). Telemedicine Outpatient Cardiovascular Care During the COVID-19 Pandemic: Bridging or Opening the Digital Divide? *Circulation*, 142(5), 510–512. https://doi.org/10.1161/CIRCULATIONAHA.120.048185
- Ebo, T. O., Clement David-Olawade, A., Dolapo Mary Ebo, D. M., Egbon, E., & Olawade, D. B. (2025, July 10). Transforming Healthcare Delivery: A comprehensive review of Digital Integration, challenges, and best practices in Integrated Care Systems. *Digital Engineering*. https://www.sciencedirect.com/science/article/pii/S2950550X25000226?
- Endalamaw, A., Khatri, R. B., Erku, D., Zewdie, A., Wolka, E., Nigatu, F., & Assefa, Y. (2024). Barriers and Strategies for Primary Health Care Workforce Development: A Synthesis of Evidence. *BMC Primary Care*, 25(1), 99. https://doi.org/10.1186/s12875-024-02336-1
- Evenson, S. E., Hafferty, F. W., Sharp, R. R., & Tilburt, J. C. (2024). Measuring and monitoring health equity in health care organizations. *Mayo Clinic Proceedings*, *99*(6), 849–860.https://www.mayoclinicproceedings.org/article/S0025-6196%2824%2900197-6/fulltext?
- Fiastro, A., Brown, A., Gomperts, R., & Godfrey, E. (2025, August 1). Demand for Medication Abortion Through Telehealth Before and After the Dobbs v. Jackson Supreme Court Decision in States Where Abortion Is Legal. *Women's Health Issues*. https://doi.org/10.1016/j.whi.2025.06.003
- Friesem, Y. (2016). Developing digital empathy: A holistic approach to media literacy research methods. In M. N. Yildiz & J. Keengwe (Eds.), *Handbook of Research on Media Literacy in the Digital Age* (Vol. 1, pp. 145–160).

 IGI Global. https://www.researchgate.net/publication/344908159 Developing Digital Empathy/citation/download
- Fox, G., Lynn, T., van der Werff, L., & Kennedy, J. (2025). Does telemedicine hold the key to reproductive health care? A quantitative examination of women's intentions toward uses and accurate information disclosure. *Health Services Research*, 60(3), e14403. https://doi.org/10.1111/1475-6773.14403
- Gage, A.D., Knight, M.A., Bintz, C. et al. (2025). Disparities in telemedicine use and payment policies in the United States between 2019 and 2023. *Commun Med 5*, 52 (2025). https://doi.org/10.1038/s43856-025-00757-2
- Gavi. (2025). Gavi Digital Health Information Strategy Technical Brief Series. *Gavi, the Vaccine Alliance*. https://www.gavi.org/programmes-impact/our-impact/evaluation-studies/gavi-digital-health-information-strategy-technical-brief-series
- Gerke, S., Shachar, C., Chai, P., & Cohen, I. (2020). Regulatory, safety, and privacy concerns associated with home monitoring technologies during the COVID-19 pandemic. *Nature Medicine*, 26, 1–7. 10.1038/s41591-020-0994-1.
- Girmay M. (2024). Digital Health Divide: Opportunities for Reducing Health Disparities and Promoting Equitable Care for Maternal and Child Health Populations. *International Journal of MCH and AIDS, 13*, e026. https://doi.org/10.25259/IJMA 41 2024
- Gleason, K., & Suen, J. J. (2022). Going beyond affordability for digital equity: Closing the "Digital Divide" through outreach and training programs for older adults. *Journal of the American Geriatrics Society*, 70(1), 75–77. https://doi.org/10.1111/jgs.17511
- Gelles-Watnick, R. (2024, January 31). Americans' Use of Mobile Technology and Home Broadband. *Pew Research Center*. https://www.pewresearch.org/internet/2024/01/31/americans-use-of-mobile-technology-and-home-broadband/
- Gogia, S. (Ed.). (2019). Fundamentals of telemedicine and telehealth. Academic Press.
- Greenhalgh, T., Wherton, J., Shaw, S., & Morrison, C. (2020). Video consultations for COVID-19. *BMJ (Clinical research ed.)*, 368, m998. https://doi.org/10.1136/bmj.m998
- Haas, M., Osias, P., Mueller, J., & VandeVusse, A. (2025, June 26). Telehealth use among publicly funded family planning clinics in the United States: Results from a national survey. Contraception. https://www.sciencedirect.com/science/article/pii/S0010782425001945?via%3Dihub

- Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Telemedicine for healthcare: Capabilities, features, barriers, and applications. *Sensors International*, *2*, 100117. https://doi.org/10.1016/j.sintl.2021.100117
- Hall, M. A., & McGraw, D. (2014). For telehealth to succeed, privacy and security risks must be addressed. AMA *Journal of Ethics*, *16*(12), 956–962. https://journalofethics.ama-assn.org/article/privacy-and-security-concerns-telehealth/2014-12
- Harrison, R., Fischer, S., Walpola, R. L., Chauhan, A., Babalola, T., Mears, S., & Le-Dao, H. (2021). Where Do Models for Change Management, Improvement, and Implementation Meet? A Systematic Review of the Applications of Change Management Models in Healthcare. *Journal of Healthcare Leadership*, 13, 85–108. https://doi.org/10.2147/JHL.S289176
- Hawrysz, L., Gierszewska, G., & Bitkowska, A. (2021). The Research on Patient Satisfaction with Remote Healthcare before and during the COVID-19 Pandemic. *International Journal of Environmental Research and Public Health*, 18(10), 5338. https://doi.org/10.3390/ijerph18105338
- He, Y., Aliyu, A., Evans, M., & Luo, C. (2021). Healthcare Cybersecurity Challenges and Solutions in the COVID-19 Era: A Scoping Review. *Journal of Medical Internet Research*, 23(4), e21747. https://doi.org/10.2196/21747
- Health Sector Cybersecurity Coordination Center. (2022). Healthcare Cybersecurity Bulletin: Annual Threat Report. U.S. Department of Health & Human Services. https://www.hhs.gov
- Hill, M., & Haigh, S. (2025, June 12). Inside the legal fight over the telehealth clinics that help women defy abortion bans. *AP News*. https://apnews.com/article/abortion-ban-pills-states-shield-laws-nyc-7c05af01ce701357b009b531f7803ad9
- Hilty, D. M., Gentry, M. T., McKean, A. J., Cowan, K. E., Lim, R. F., & Lu, F. G. (2020). Telehealth for rural diverse populations: tele-behavioral and cultural competencies, clinical outcomes, and administrative approaches. *mHealth*, *6*, 20. https://doi.org/10.21037/mhealth.2019.10.04
- HIPAA Journal. (2025, February). HIPAA Encryption Requirements 2025 Update. https://www.hipaajournal.com/hipaa-encryption-requirements/
- Hubbart, J. A. (2023). Organizational Change: Considering Truth and Buy-In. *Administrative Sciences*, 13(1), 3. https://doi.org/10.3390/admsci13010003
- Houser, S. H., Flite, C. A., & Foster, S. L. (2023). Privacy and Security Risk Factors Related to Telehealth Services A Systematic Review. *Perspectives in Health Information Management*, 20(1), 1f.
- Ignatowicz, A., Tarrant, C., Mannion, R., El-Sawy, D., Conroy, S., & Lasserson, D. (2023). Organizational resilience in healthcare: a review and descriptive narrative synthesis of approaches to resilience measurement and assessment in empirical studies. *BMC Health Services Research*, 23(1), 376. https://doi.org/10.1186/s12913-023-09242-9
- Jack, S.M., & Campbell, K. on behalf of the PHN-PREP Project Team (2021). Intimate partner violence: Promoting safety on telehealth platforms. https://phnprep.ca/resources/ipv-telehealth-safety. School of Nursing, McMaster University.
- Kaplan, R. S., & Norton, D. P. (2004). Strategy Maps: Converting Intangible Assets into Tangible Outcomes. Harvard Business School Press.
- Kaplan, R. S., & Norton, D. P. (2005). *The Balanced Scorecard: Measures that Drive Performance* (Vol. 70, pp. 71–79). Harvard Business Review.
- Kassam, I., Ilkina, D., Kemp, J., Roble, H., Carter-Langford, A., & Shen, N. (2023). Patient Perspectives and Preferences for Consent in the Digital Health Context: State-of-the-art Literature Review. *Journal of Medical Internet Research*, 25, e42507. https://doi.org/10.2196/42507
- Khairat, S., Haithcoat, T., Liu, S., Zaman, T., Edson, B., Gianforcaro, R., & Shyu, C. R. (2019). Advancing health equity and access using telemedicine: a geospatial assessment. *Journal of the American Medical Informatics Association: JAMIA*, 26(8-9), 796–805. https://doi.org/10.1093/jamia/ocz108
- Kichloo, A., Albosta, M., Dettloff, K., Wani, F., El-Amir, Z., Singh, J., Aljadah, M., Chakinala, R. C., Kanugula, A. K., Solanki, S., Chugh, S., & Kumar, A. (2020). Telemedicine, the current COVID-19 pandemic, and the future: A narrative review and perspectives moving forward in the USA. *Family Medicine and Community Health*, 8(3), e000530. https://doi.org/10.1136/fmch-2020-000530
- Koenig, L. R., Becker, A., Ko, J., & Upadhyay, U. D. (2023). The Role of Telehealth in Promoting Equitable Abortion Access in the United States: Spatial Analysis. *JMIR Public Health and Surveillance*, 9, e45671. https://doi.org/10.2196/45671
- Kotter, J. P. (1996). Leading Change. Harvard Business School Press.
- Kruse, C. S., Krowski, N., Rodriguez, B., Tran, L., Vela, J., & Brooks, M. (2018). Telehealth and patient satisfaction: A systematic review and narrative analysis. *BMJ Open*, 7(8), e016242. https://doi.org/10.1136/bmjopen-2017-016242
- Laukka, E., Pölkki, T., & Kanste, O. (2022). Leadership in the context of digital health services: A concept analysis. *Journal of Nursing Management*, 30(7), 2763–2780. https://doi.org/10.1111/jonm.13763
- Magnet ABA. (2025, May 25). *Telehealth statistics. Magnet ABA Helping Your Child Thrive*. https://www.magnetaba.com/blog/telehealth-statistics

- Mehrotra, A., Bhatia, R. S., & Snoswell, C. L. (2021). Paying for Telemedicine After the Pandemic. *JAMA*, 325(5), 431–432. https://doi.org/10.1001/jama.2020.25706
- Miles, M. C., Richardson, K. M., Wolfe, R., Hairston, K., Cleveland, M., Kelly, C., Lippert, J., Mastandrea, N., & Pruitt, Z. (2023). Using Kotter's Change Management Framework to Redesign Departmental GME Recruitment. *Journal of Graduate Medical Education*, 15(1), 98–104. https://doi.org/10.4300/JGME-D-22-00191.1
- Moazzami, B., Razavi-Khorasani, N., Dooghaie Moghadam, A., Farokhi, E., & Rezaei, N. (2020). COVID-19 and telemedicine: Immediate action required for maintaining healthcare providers' well-being. *Journal of Clinical Virology*, 126, 104345. https://doi.org/10.1016/j.jcv.2020.104345
- Morelli, S., Daniele, C., D'Avenio, G., Grigioni, M., & Giansanti, D. (2024). Optimizing Telehealth: Leveraging Key Performance Indicators for Enhanced Telehealth and Digital Healthcare Outcomes (Telemechron Study). *Healthcare*, *12*(13), 1319. https://doi.org/10.3390/healthcare12131319
- National Institute of Standards and Technology (NIST). (2025). Health and AI Equity Lab: Ensuring inclusive AI development in healthcare. https://www.brookings.edu/articles/health-and-ai-advancing-responsible-and-ethical-ai-for-all-communities/
- Nilsen, P., Seing, I., Ericsson, C., et al. (2020). Characteristics of successful changes in health care organizations: an interview study with physicians, registered nurses, and assistant nurses. *BMC Health Serv Res* 20, 147 (2020). https://doi.org/10.1186/s12913-020-4999-8
- Nugroho, H., Riyadi, S., Mudjijah, Sl., Firdaus, P. & Hidayat, R. (2024). The Influence of Digital Leadership on Employee Performance with Digital Culture as A Moderating Variable. *Maneggio*, 1, 45-55. 10.62872/jt6pfc66.
- Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science* 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
- Ong, B. N., Hodgson, D., Small, N., Nahar, P., & Sanders, C. (2020). Implementing a digital patient feedback system: an analysis using normalization process theory. *BMC Health Services Research*, 20(1), 387. https://doi.org/10.1186/s12913-020-05234-1
- Opara-Martins, J., Sahandi, R. & Tian, F. (2016). Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective. *J Cloud Comp* 5, 4 (2016). https://doi.org/10.1186/s13677-016-0054-z
- IMD (2025, June 21). Organizational Culture: Transform Your Company's Workplace. *IMD Business School for management and leadership courses*. (2025, June 21). https://www.imd.org/blog/management/organizational-culture
- Perry M. F. (2023). Confidential Telehealth Care for Adolescents: Challenges and Solutions Identified During the COVID-19 Pandemic. Current pediatrics reports, 1–8. *Advance Online Publication*. https://doi.org/10.1007/s40124-023-00288-1
- Powell, R. E., Henstenburg, J. M., Cooper, G., Hollander, J. E., & Rising, K. L. (2017). Patient Perceptions of Telehealth Primary Care Video Visits. *Annals of Family Medicine*, 15(3), 225–229. https://doi.org/10.1370/afin.2095
- Prather, C., Fuller, T. R., Marshall, K. J., & Jeffries, W. L., 4th (2016). The Impact of Racism on the Sexual and Reproductive Health of African American Women. *Journal of Women's Health (2002), 11* (7), 664–671. https://doi.org/10.1089/jwh.2015.5637
- Prosci. (2025, July 30). *Digital Transformation in Healthcare: Investment Priorities*. Prosci Blog. Retrieved from https://www.prosci.com/blog/digital-transformation-in-healthcare
- Pulivarti, R., Littlefield, K., Patrick, B., Wang, S., Williams, R. (2024). Mitigating Cybersecurity and Privacy Risks in Telehealth Smart Home Integration: Healthcare Sector Risk Management Approaches. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 34 ipd. https://doi.org/10.6028/NIST.CSWP.34.ipd
- Rankine, J., Kidd, K. M., Sequeira, G. M., Miller, E., & Ray, K. N. (2023). Adolescent Perspectives on the Use of Telemedicine for Confidential Health Care: An Exploratory Mixed-Methods Study. *The Journal Of Adolescent Health: Official Publication of the Society for Adolescent Medicine*, 73(2), 360–366. https://doi.org/10.1016/j.jadohealth.2023.04.005
- Ramineni, V., Ingole, B. S., Pulipeta, N. K., Pothineni, B. G., & Gupta, A. (2025). *Advancing digital accessibility in healthcare and wearable devices: Inclusive solutions for patient engagement. arXiv.* Preprint. https://doi.org/10.48550/arXiv.2505.24042
- Reisberger, T., Reisberger, P., Copuš, L. (2025). The linkage between digital transformation and organizational culture: A novel machine learning literature review based on Latent Dirichlet Allocation. *J Knowl Econ* 16, 2082–2118 (2025). https://doi.org/10.1007/s13132-024-02027-3
- Richardson, S., Lawrence, K., Schoenthaler, A. M., & Mann, D. (2022). A framework for digital health equity in npj Digital Medicine. *NPJ Digital Medicine*, *5*, 119. https://doi.org/10.1038/s41746-022-00663-0
- Roberts, E. T., & Mehrotra, A. (2020). Assessment of Disparities in Digital Access Among Medicare Beneficiaries and Implications for Telemedicine. *JAMA Internal Medicine*, 180(10), 1386–1389. https://doi.org/10.1001/jamainternmed.2020.2666

- Rodriguez, J. A., Betancourt, J. R., Sequist, T. D., & Ganguli, I. (2021). Differences in the use of telephone and video telemedicine visits during the COVID-19 pandemic. *American Journal of Managed Care*, 27(1), 21–26. https://doi.org/10.37765/ajmc.2021.88573
- Rousseau, D. & Have, S. (2022). Evidence-based change management. *Organizational Dynamics*, *51*, 100899. 10.1016/j.orgdyn.2022.100899.
- Samuels-Kalow, M., Jaffe, T., & Zachrison, K. (2021). Digital disparities: Designing telemedicine systems with a health equity aim. *Emergency Medicine Journal*, *38*, emermed-2020. 10.1136/emermed-2020-210896.
- Scott, I. A., Shaw, T., Slade, C., Wan, T. T., Coorey, C., Johnson, S. L. J., & Sullivan, C. M. (2023). Digital Health Competencies for the Next Generation of Physicians. *Internal Medicine Journal*, *53*(6), 1042–1049. https://doi.org/10.1111/imj.16122
- Shachar, C., Engel, J., & Elwyn, G. (2020). Implications for Telehealth in a Post-Pandemic Future: Regulatory and Privacy Issues. *JAMA*, 323(23), 2375–2376. https://doi.org/10.1001/jama.2020.7943
- Shigekawa, E., Fix, M., Corbett, G., Roby, D. H., & Coffman, J. (2018). The Current State of Telehealth Evidence: A Rapid Review. *Health Affairs (Project Hope)*, 37(12), 1975–1982. https://doi.org/10.1377/hlthaff.2018.05132
- Shore, J. H., Yellowlees, P., Caudill, R., Johnston, B., Turvey, C., Mishkind, M., Krupinski, E., Myers, K., Shore, P., Kaftarian, E., & Hilty, D. (2018). Best Practices in Videoconferencing-Based Telemental Health April 2018. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 24(11), 827–832. https://doi.org/10.1089/tmj.2018.0237
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333–339.
- Sobel, L., Gomez, I., & Salganicoff, A. (2025, July 25). The intersection of state and federal policies on access to medication abortion via telehealth after Dobbs. *KFF*. https://www.kff.org/womens-health-policy/issue-brief/the-intersection-of-state-and-federal-policies-on-access-to-medication-abortion-via-telehealth-after-dobbs/
- Spanos, S., Leask, E., & Patel, R. et al. (2024). Healthcare leaders navigating complexity: a scoping review of key trends in future roles and competencies. *BMC Med Educ 24*, 720 (2024). https://doi.org/10.1186/s12909-024-05689-4
- Sriharan, A., et al. (2024). Leadership for AI transformation in a health care organization. *Journal of Medical Internet Research*, e54556. https://doi.org/10.2196/54556
- Stawar, T. L. (2002). Review of the strategy-focused organization: How balanced scorecard companies thrive in the new business environment [Review of the book The strategy-focused organization: How balanced scorecard companies thrive in the new business environment, by R. S. Kaplan & D. P. Norton]. *Psychiatric Rehabilitation Journal*, 26(2), 212–213. https://doi.org/10.1037/h0094560
- Steenkamp, I., Peltonen, L. M., & Chipps, J. (2025). Digital health readiness insights from healthcare leaders in operational management: A cross-sectional survey. *BMC Health Services Research*, 25, 240. https://doi.org/10.1186/s12913-024-12129-y
- Tazi, F., Dykstra, J., Rajivan, P., & Das, S. (2024). "We have no security concerns": Understanding the privacy-security nexus in telehealth for audiologists and speech-language pathologists. In *Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24)*, 1–20. ACM.Pages. https://doi.org/10.1145/3613904.3642208
- Telehealth statistics. Master Mind Behavior: At-Home ABA Therapy in NJ & GA. (2025, March 3). https://www.mastermindbehavior.com/post/telehealth-statistics
- Totten, A. M., Womack, D. M., Eden, K. B., McDonagh, M. S., Griffin, J. C., Grusing, S., & Hersh, W. R. (2016). Telehealth: Mapping the evidence for patient outcomes from systematic reviews. *Agency for Healthcare Research and Quality (US)*. https://www.ncbi.nlm.nih.gov/books/NBK379320/
- U.S. Department of Health & Human Services. (2023). HIPAA and COVID-19 Telehealth Guidance Update. https://www.hhs.gov/hipaa/for-professionals/special-topics/hipaa-covid19/index.html
- U.S. Department of Health & Human Services (HHS), Office for Civil Rights. (2024). HIPAA Privacy Rule to Support Reproductive Health Care Privacy (Final Rule Fact Sheet). https://www.hhs.gov/hipaa/for-professionals/special-topics/reproductive-health/final-rule-fact-sheet/index.html
- U.S. Department of Health & Human Services, Office for Civil Rights (HHS OCR). (2025). HIPAA Security Rule to Strengthen the Cybersecurity of Electronic Protected Health Information (Proposed Rule). Federal Register. https://www.federalregister.gov/documents/2025/01/06/2024-30983/hipaa-security-rule-to-strengthen-the-cybersecurity-of-electronic-protected-health-information
- Voltage Control. (2024, December 30). Change Management for Leaders: Essential Strategies. https://voltagecontrol.com/articles/change-management-for-leaders-essential-strategies
- Veinot, T. C., Mitchell, H., & Ancker, J. S. (2018). Good intentions are not enough: how informatics interventions can worsen inequality. *Journal of the American Medical Informatics Association: JAMIA*, 25(8), 1080– 1088. https://doi.org/10.1093/jamia/ocy052
- Vukotich G. (2023). Healthcare and Cybersecurity: Embracing a Zero-Trust Approach. *Health Services Insights*, 16, 11786329231187826. https://doi.org/10.1177/11786329231187826

- Wang, C. P., Mkuu, R., Andreadis, K., Muellers, K. A., Ancker, J. S., Horowitz, C., Kaushal, R., & Lin, J. J. (2024). Examining and Addressing Telemedicine Disparities Through the Lens of the Social Determinants of Health: A Qualitative Study of Patients and Providers During the COVID-19 Pandemic. AMIA Annual Symposium Proceedings, Vol. 2023, 1287–1296.
- Weiner, B.J. (2009). A theory of organizational readiness for change. *Implementation Sci* 4, 67 (2009). https://doi.org/10.1186/1748-5908-4-67
- Whyler, N., Atkins, L., Hogg, P., Leong, A., Metcalfe, J., Scoullar, M., & Tippett, E. (2024). Harnessing the Benefits of Telehealth in Long COVID Service Provision. *Public Health Reviews*, *45*, 10.3389/phrs. 2024.1606948.
- Wired Editorial Team. (2023, August 25). The Trade-offs for Privacy in a Post-Dobbs Era. *Wired*. https://www.wired.com/story/the-trade-offs-for-privacy-in-a-post-dobbs-era
- Wisniewski, H., Gorrindo, T., Rauseo-Ricupero, N., Hilty, D., & Torous, J. (2020). The Role of Digital Navigators in Promoting Clinical Care and Technology Integration into Practice. *Digital biomarkers*, 4(Suppl 1), 119–135. https://doi.org/10.1159/000510144
- World Health Organization. (2024, October 1). The power of storytelling for health impact. WHO Western Pacific feature stories. https://www.who.int/westernpacific/newsroom/feature-stories/item/the-power-of-storytelling-for-health-impact
- Wright, J., & Burrell, D. N. (2023). Telemedicine cybersecurity protection in reproductive healthcare. *HOLISTICA Journal of Business and Public Administration*, 14(2), 1–14.
- Wosik, J., Fudim, M., Cameron, B., Gellad, Z. F., Cho, A., Phinney, D., Curtis, S., Roman, M., Poon, E. G., Ferranti, J., Katz, J. N., & Tcheng, J. (2020). Telehealth Transformation: COVID-19 and the Rise of Virtual Care. *Journal of the American Medical Informatics Association: JAMIA*, 27(6), 957–962. https://doi.org/10.1093/jamia/ocaa067
- Yao, R, Zhang, W, Evans, R, Cao, G, Rui, T, & Shen, L. (2022). Inequities in Health Care Services Caused by the Adoption of Digital Health Technologies: Scoping Review. *J Med Internet Res*, 24(3): e34144 URL: https://www.jmir.org/2022/3/e34144 DOI: 10.2196/34144
- Zadushlivy, N., Biviji, R., & Williams, K. S. (2025). Exploration of Reproductive Health Apps' Data Privacy Policies and the Risks Posed to Users: Qualitative Content Analysis. *Journal of Medical Internet Research*, 27, e51517. https://doi.org/10.2196/51517
- Zhang, X., & Saltman, R. (2022). Impact of Electronic Health Record Interoperability on Telehealth Service Outcomes. *JMIR Medical Informatics*, 10(1), e31837. https://doi.org/10.2196/31837